3.281 \(\int \frac{x^2 (a+b \log (c x^n))}{\sqrt{d+e x^2}} \, dx\)

Optimal. Leaf size=359 \[ \frac{b d^{3/2} n \sqrt{\frac{e x^2}{d}+1} \text{PolyLog}\left (2,e^{2 \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )}\right )}{4 e^{3/2} \sqrt{d+e x^2}}-\frac{d^{3/2} \sqrt{\frac{e x^2}{d}+1} \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right ) \left (a+b \log \left (c x^n\right )\right )}{2 e^{3/2} \sqrt{d+e x^2}}+\frac{x \sqrt{d+e x^2} \left (a+b \log \left (c x^n\right )\right )}{2 e}-\frac{b d^{3/2} n \sqrt{\frac{e x^2}{d}+1} \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )^2}{4 e^{3/2} \sqrt{d+e x^2}}-\frac{b d^{3/2} n \sqrt{\frac{e x^2}{d}+1} \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )}{4 e^{3/2} \sqrt{d+e x^2}}+\frac{b d^{3/2} n \sqrt{\frac{e x^2}{d}+1} \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right ) \log \left (1-e^{2 \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )}\right )}{2 e^{3/2} \sqrt{d+e x^2}}-\frac{b n x \sqrt{d+e x^2}}{4 e} \]

[Out]

-(b*n*x*Sqrt[d + e*x^2])/(4*e) - (b*d^(3/2)*n*Sqrt[1 + (e*x^2)/d]*ArcSinh[(Sqrt[e]*x)/Sqrt[d]])/(4*e^(3/2)*Sqr
t[d + e*x^2]) - (b*d^(3/2)*n*Sqrt[1 + (e*x^2)/d]*ArcSinh[(Sqrt[e]*x)/Sqrt[d]]^2)/(4*e^(3/2)*Sqrt[d + e*x^2]) +
 (b*d^(3/2)*n*Sqrt[1 + (e*x^2)/d]*ArcSinh[(Sqrt[e]*x)/Sqrt[d]]*Log[1 - E^(2*ArcSinh[(Sqrt[e]*x)/Sqrt[d]])])/(2
*e^(3/2)*Sqrt[d + e*x^2]) + (x*Sqrt[d + e*x^2]*(a + b*Log[c*x^n]))/(2*e) - (d^(3/2)*Sqrt[1 + (e*x^2)/d]*ArcSin
h[(Sqrt[e]*x)/Sqrt[d]]*(a + b*Log[c*x^n]))/(2*e^(3/2)*Sqrt[d + e*x^2]) + (b*d^(3/2)*n*Sqrt[1 + (e*x^2)/d]*Poly
Log[2, E^(2*ArcSinh[(Sqrt[e]*x)/Sqrt[d]])])/(4*e^(3/2)*Sqrt[d + e*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.410335, antiderivative size = 359, normalized size of antiderivative = 1., number of steps used = 12, number of rules used = 12, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.48, Rules used = {2341, 321, 215, 2350, 12, 14, 195, 5659, 3716, 2190, 2279, 2391} \[ \frac{b d^{3/2} n \sqrt{\frac{e x^2}{d}+1} \text{PolyLog}\left (2,e^{2 \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )}\right )}{4 e^{3/2} \sqrt{d+e x^2}}-\frac{d^{3/2} \sqrt{\frac{e x^2}{d}+1} \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right ) \left (a+b \log \left (c x^n\right )\right )}{2 e^{3/2} \sqrt{d+e x^2}}+\frac{x \sqrt{d+e x^2} \left (a+b \log \left (c x^n\right )\right )}{2 e}-\frac{b d^{3/2} n \sqrt{\frac{e x^2}{d}+1} \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )^2}{4 e^{3/2} \sqrt{d+e x^2}}-\frac{b d^{3/2} n \sqrt{\frac{e x^2}{d}+1} \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )}{4 e^{3/2} \sqrt{d+e x^2}}+\frac{b d^{3/2} n \sqrt{\frac{e x^2}{d}+1} \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right ) \log \left (1-e^{2 \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )}\right )}{2 e^{3/2} \sqrt{d+e x^2}}-\frac{b n x \sqrt{d+e x^2}}{4 e} \]

Antiderivative was successfully verified.

[In]

Int[(x^2*(a + b*Log[c*x^n]))/Sqrt[d + e*x^2],x]

[Out]

-(b*n*x*Sqrt[d + e*x^2])/(4*e) - (b*d^(3/2)*n*Sqrt[1 + (e*x^2)/d]*ArcSinh[(Sqrt[e]*x)/Sqrt[d]])/(4*e^(3/2)*Sqr
t[d + e*x^2]) - (b*d^(3/2)*n*Sqrt[1 + (e*x^2)/d]*ArcSinh[(Sqrt[e]*x)/Sqrt[d]]^2)/(4*e^(3/2)*Sqrt[d + e*x^2]) +
 (b*d^(3/2)*n*Sqrt[1 + (e*x^2)/d]*ArcSinh[(Sqrt[e]*x)/Sqrt[d]]*Log[1 - E^(2*ArcSinh[(Sqrt[e]*x)/Sqrt[d]])])/(2
*e^(3/2)*Sqrt[d + e*x^2]) + (x*Sqrt[d + e*x^2]*(a + b*Log[c*x^n]))/(2*e) - (d^(3/2)*Sqrt[1 + (e*x^2)/d]*ArcSin
h[(Sqrt[e]*x)/Sqrt[d]]*(a + b*Log[c*x^n]))/(2*e^(3/2)*Sqrt[d + e*x^2]) + (b*d^(3/2)*n*Sqrt[1 + (e*x^2)/d]*Poly
Log[2, E^(2*ArcSinh[(Sqrt[e]*x)/Sqrt[d]])])/(4*e^(3/2)*Sqrt[d + e*x^2])

Rule 2341

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Dist[(d^IntPart[
q]*(d + e*x^2)^FracPart[q])/(1 + (e*x^2)/d)^FracPart[q], Int[x^m*(1 + (e*x^2)/d)^q*(a + b*Log[c*x^n]), x], x]
/; FreeQ[{a, b, c, d, e, n}, x] && IntegerQ[m/2] && IntegerQ[q - 1/2] &&  !(LtQ[m + 2*q, -2] || GtQ[d, 0])

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 215

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[(Rt[b, 2]*x)/Sqrt[a]]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rule 2350

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol] :> Wit
h[{u = IntHide[(f*x)^m*(d + e*x^r)^q, x]}, Dist[a + b*Log[c*x^n], u, x] - Dist[b*n, Int[SimplifyIntegrand[u/x,
 x], x], x] /; ((EqQ[r, 1] || EqQ[r, 2]) && IntegerQ[m] && IntegerQ[q - 1/2]) || InverseFunctionFreeQ[u, x]] /
; FreeQ[{a, b, c, d, e, f, m, n, q, r}, x] && IntegerQ[2*q] && ((IntegerQ[m] && IntegerQ[r]) || IGtQ[q, 0])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 195

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(x*(a + b*x^n)^p)/(n*p + 1), x] + Dist[(a*n*p)/(n*p + 1),
 Int[(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && GtQ[p, 0] && (IntegerQ[2*p] || (EqQ[n, 2
] && IntegerQ[4*p]) || (EqQ[n, 2] && IntegerQ[3*p]) || LtQ[Denominator[p + 1/n], Denominator[p]])

Rule 5659

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)/(x_), x_Symbol] :> Subst[Int[(a + b*x)^n/Tanh[x], x], x, ArcSinh
[c*x]] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0]

Rule 3716

Int[((c_.) + (d_.)*(x_))^(m_.)*tan[(e_.) + Pi*(k_.) + (Complex[0, fz_])*(f_.)*(x_)], x_Symbol] :> -Simp[(I*(c
+ d*x)^(m + 1))/(d*(m + 1)), x] + Dist[2*I, Int[((c + d*x)^m*E^(2*(-(I*e) + f*fz*x)))/(E^(2*I*k*Pi)*(1 + E^(2*
(-(I*e) + f*fz*x))/E^(2*I*k*Pi))), x], x] /; FreeQ[{c, d, e, f, fz}, x] && IntegerQ[4*k] && IGtQ[m, 0]

Rule 2190

Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/((a_) + (b_.)*((F_)^((g_.)*((e_.) +
 (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[((c + d*x)^m*Log[1 + (b*(F^(g*(e + f*x)))^n)/a])/(b*f*g*n*Log[F]), x]
 - Dist[(d*m)/(b*f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*Log[1 + (b*(F^(g*(e + f*x)))^n)/a], x], x] /; FreeQ[{F,
a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2279

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2391

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> -Simp[PolyLog[2, -(c*e*x^n)]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rubi steps

\begin{align*} \int \frac{x^2 \left (a+b \log \left (c x^n\right )\right )}{\sqrt{d+e x^2}} \, dx &=\frac{\sqrt{1+\frac{e x^2}{d}} \int \frac{x^2 \left (a+b \log \left (c x^n\right )\right )}{\sqrt{1+\frac{e x^2}{d}}} \, dx}{\sqrt{d+e x^2}}\\ &=\frac{x \sqrt{d+e x^2} \left (a+b \log \left (c x^n\right )\right )}{2 e}-\frac{d^{3/2} \sqrt{1+\frac{e x^2}{d}} \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right ) \left (a+b \log \left (c x^n\right )\right )}{2 e^{3/2} \sqrt{d+e x^2}}-\frac{\left (b n \sqrt{1+\frac{e x^2}{d}}\right ) \int \frac{\frac{d x \sqrt{1+\frac{e x^2}{d}}}{e}-\frac{d^{3/2} \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )}{e^{3/2}}}{2 x} \, dx}{\sqrt{d+e x^2}}\\ &=\frac{x \sqrt{d+e x^2} \left (a+b \log \left (c x^n\right )\right )}{2 e}-\frac{d^{3/2} \sqrt{1+\frac{e x^2}{d}} \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right ) \left (a+b \log \left (c x^n\right )\right )}{2 e^{3/2} \sqrt{d+e x^2}}-\frac{\left (b n \sqrt{1+\frac{e x^2}{d}}\right ) \int \frac{\frac{d x \sqrt{1+\frac{e x^2}{d}}}{e}-\frac{d^{3/2} \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )}{e^{3/2}}}{x} \, dx}{2 \sqrt{d+e x^2}}\\ &=\frac{x \sqrt{d+e x^2} \left (a+b \log \left (c x^n\right )\right )}{2 e}-\frac{d^{3/2} \sqrt{1+\frac{e x^2}{d}} \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right ) \left (a+b \log \left (c x^n\right )\right )}{2 e^{3/2} \sqrt{d+e x^2}}-\frac{\left (b n \sqrt{1+\frac{e x^2}{d}}\right ) \int \left (\frac{d \sqrt{1+\frac{e x^2}{d}}}{e}-\frac{d^{3/2} \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )}{e^{3/2} x}\right ) \, dx}{2 \sqrt{d+e x^2}}\\ &=\frac{x \sqrt{d+e x^2} \left (a+b \log \left (c x^n\right )\right )}{2 e}-\frac{d^{3/2} \sqrt{1+\frac{e x^2}{d}} \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right ) \left (a+b \log \left (c x^n\right )\right )}{2 e^{3/2} \sqrt{d+e x^2}}+\frac{\left (b d^{3/2} n \sqrt{1+\frac{e x^2}{d}}\right ) \int \frac{\sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )}{x} \, dx}{2 e^{3/2} \sqrt{d+e x^2}}-\frac{\left (b d n \sqrt{1+\frac{e x^2}{d}}\right ) \int \sqrt{1+\frac{e x^2}{d}} \, dx}{2 e \sqrt{d+e x^2}}\\ &=-\frac{b n x \sqrt{d+e x^2}}{4 e}+\frac{x \sqrt{d+e x^2} \left (a+b \log \left (c x^n\right )\right )}{2 e}-\frac{d^{3/2} \sqrt{1+\frac{e x^2}{d}} \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right ) \left (a+b \log \left (c x^n\right )\right )}{2 e^{3/2} \sqrt{d+e x^2}}+\frac{\left (b d^{3/2} n \sqrt{1+\frac{e x^2}{d}}\right ) \operatorname{Subst}\left (\int x \coth (x) \, dx,x,\sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )\right )}{2 e^{3/2} \sqrt{d+e x^2}}-\frac{\left (b d n \sqrt{1+\frac{e x^2}{d}}\right ) \int \frac{1}{\sqrt{1+\frac{e x^2}{d}}} \, dx}{4 e \sqrt{d+e x^2}}\\ &=-\frac{b n x \sqrt{d+e x^2}}{4 e}-\frac{b d^{3/2} n \sqrt{1+\frac{e x^2}{d}} \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )}{4 e^{3/2} \sqrt{d+e x^2}}-\frac{b d^{3/2} n \sqrt{1+\frac{e x^2}{d}} \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )^2}{4 e^{3/2} \sqrt{d+e x^2}}+\frac{x \sqrt{d+e x^2} \left (a+b \log \left (c x^n\right )\right )}{2 e}-\frac{d^{3/2} \sqrt{1+\frac{e x^2}{d}} \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right ) \left (a+b \log \left (c x^n\right )\right )}{2 e^{3/2} \sqrt{d+e x^2}}-\frac{\left (b d^{3/2} n \sqrt{1+\frac{e x^2}{d}}\right ) \operatorname{Subst}\left (\int \frac{e^{2 x} x}{1-e^{2 x}} \, dx,x,\sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )\right )}{e^{3/2} \sqrt{d+e x^2}}\\ &=-\frac{b n x \sqrt{d+e x^2}}{4 e}-\frac{b d^{3/2} n \sqrt{1+\frac{e x^2}{d}} \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )}{4 e^{3/2} \sqrt{d+e x^2}}-\frac{b d^{3/2} n \sqrt{1+\frac{e x^2}{d}} \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )^2}{4 e^{3/2} \sqrt{d+e x^2}}+\frac{b d^{3/2} n \sqrt{1+\frac{e x^2}{d}} \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right ) \log \left (1-e^{2 \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )}\right )}{2 e^{3/2} \sqrt{d+e x^2}}+\frac{x \sqrt{d+e x^2} \left (a+b \log \left (c x^n\right )\right )}{2 e}-\frac{d^{3/2} \sqrt{1+\frac{e x^2}{d}} \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right ) \left (a+b \log \left (c x^n\right )\right )}{2 e^{3/2} \sqrt{d+e x^2}}-\frac{\left (b d^{3/2} n \sqrt{1+\frac{e x^2}{d}}\right ) \operatorname{Subst}\left (\int \log \left (1-e^{2 x}\right ) \, dx,x,\sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )\right )}{2 e^{3/2} \sqrt{d+e x^2}}\\ &=-\frac{b n x \sqrt{d+e x^2}}{4 e}-\frac{b d^{3/2} n \sqrt{1+\frac{e x^2}{d}} \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )}{4 e^{3/2} \sqrt{d+e x^2}}-\frac{b d^{3/2} n \sqrt{1+\frac{e x^2}{d}} \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )^2}{4 e^{3/2} \sqrt{d+e x^2}}+\frac{b d^{3/2} n \sqrt{1+\frac{e x^2}{d}} \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right ) \log \left (1-e^{2 \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )}\right )}{2 e^{3/2} \sqrt{d+e x^2}}+\frac{x \sqrt{d+e x^2} \left (a+b \log \left (c x^n\right )\right )}{2 e}-\frac{d^{3/2} \sqrt{1+\frac{e x^2}{d}} \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right ) \left (a+b \log \left (c x^n\right )\right )}{2 e^{3/2} \sqrt{d+e x^2}}-\frac{\left (b d^{3/2} n \sqrt{1+\frac{e x^2}{d}}\right ) \operatorname{Subst}\left (\int \frac{\log (1-x)}{x} \, dx,x,e^{2 \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )}\right )}{4 e^{3/2} \sqrt{d+e x^2}}\\ &=-\frac{b n x \sqrt{d+e x^2}}{4 e}-\frac{b d^{3/2} n \sqrt{1+\frac{e x^2}{d}} \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )}{4 e^{3/2} \sqrt{d+e x^2}}-\frac{b d^{3/2} n \sqrt{1+\frac{e x^2}{d}} \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )^2}{4 e^{3/2} \sqrt{d+e x^2}}+\frac{b d^{3/2} n \sqrt{1+\frac{e x^2}{d}} \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right ) \log \left (1-e^{2 \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )}\right )}{2 e^{3/2} \sqrt{d+e x^2}}+\frac{x \sqrt{d+e x^2} \left (a+b \log \left (c x^n\right )\right )}{2 e}-\frac{d^{3/2} \sqrt{1+\frac{e x^2}{d}} \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right ) \left (a+b \log \left (c x^n\right )\right )}{2 e^{3/2} \sqrt{d+e x^2}}+\frac{b d^{3/2} n \sqrt{1+\frac{e x^2}{d}} \text{Li}_2\left (e^{2 \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )}\right )}{4 e^{3/2} \sqrt{d+e x^2}}\\ \end{align*}

Mathematica [C]  time = 0.784351, size = 205, normalized size = 0.57 \[ \frac{\frac{b n \sqrt{\frac{e x^2}{d}+1} \left (2 e^2 x^3 \, _3F_2\left (\frac{3}{2},\frac{3}{2},\frac{3}{2};\frac{5}{2},\frac{5}{2};-\frac{e x^2}{d}\right )+9 d \sqrt{e} (2 \log (x)-1) \left (\sqrt{e} x \sqrt{\frac{e x^2}{d}+1}-\sqrt{d} \sinh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )\right )\right )}{\sqrt{d+e x^2}}+18 e x \sqrt{d+e x^2} \left (a+b \log \left (c x^n\right )-b n \log (x)\right )-18 d \sqrt{e} \log \left (\sqrt{e} \sqrt{d+e x^2}+e x\right ) \left (a+b \log \left (c x^n\right )-b n \log (x)\right )}{36 e^2} \]

Antiderivative was successfully verified.

[In]

Integrate[(x^2*(a + b*Log[c*x^n]))/Sqrt[d + e*x^2],x]

[Out]

((b*n*Sqrt[1 + (e*x^2)/d]*(2*e^2*x^3*HypergeometricPFQ[{3/2, 3/2, 3/2}, {5/2, 5/2}, -((e*x^2)/d)] + 9*d*Sqrt[e
]*(Sqrt[e]*x*Sqrt[1 + (e*x^2)/d] - Sqrt[d]*ArcSinh[(Sqrt[e]*x)/Sqrt[d]])*(-1 + 2*Log[x])))/Sqrt[d + e*x^2] + 1
8*e*x*Sqrt[d + e*x^2]*(a - b*n*Log[x] + b*Log[c*x^n]) - 18*d*Sqrt[e]*(a - b*n*Log[x] + b*Log[c*x^n])*Log[e*x +
 Sqrt[e]*Sqrt[d + e*x^2]])/(36*e^2)

________________________________________________________________________________________

Maple [F]  time = 0.406, size = 0, normalized size = 0. \begin{align*} \int{{x}^{2} \left ( a+b\ln \left ( c{x}^{n} \right ) \right ){\frac{1}{\sqrt{e{x}^{2}+d}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(a+b*ln(c*x^n))/(e*x^2+d)^(1/2),x)

[Out]

int(x^2*(a+b*ln(c*x^n))/(e*x^2+d)^(1/2),x)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a+b*log(c*x^n))/(e*x^2+d)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{e x^{2} + d} b x^{2} \log \left (c x^{n}\right ) + \sqrt{e x^{2} + d} a x^{2}}{e x^{2} + d}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a+b*log(c*x^n))/(e*x^2+d)^(1/2),x, algorithm="fricas")

[Out]

integral((sqrt(e*x^2 + d)*b*x^2*log(c*x^n) + sqrt(e*x^2 + d)*a*x^2)/(e*x^2 + d), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2} \left (a + b \log{\left (c x^{n} \right )}\right )}{\sqrt{d + e x^{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(a+b*ln(c*x**n))/(e*x**2+d)**(1/2),x)

[Out]

Integral(x**2*(a + b*log(c*x**n))/sqrt(d + e*x**2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b \log \left (c x^{n}\right ) + a\right )} x^{2}}{\sqrt{e x^{2} + d}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a+b*log(c*x^n))/(e*x^2+d)^(1/2),x, algorithm="giac")

[Out]

integrate((b*log(c*x^n) + a)*x^2/sqrt(e*x^2 + d), x)